infer_lcm_rw conduct local maximum a posteriori inference for associative and structuallearning

infer_lcm_rw(X, opts)

Arguments

X

matrix cotaining time, US, CSs.

   time  stimulus onset, unit is sec

   US  Unconditioned Stimulus

   CS  Conditioned Stimului or Context. If using multiple CS, set variables name as CS1,CS2,CS3...
opts

(optional)options used in inference

a hyperparameter of beta prior(default = 1)

b hyperparameter of beta prior(default = 1)

c_alpha concentration parameter for Chinese restaurant process prior(default = 1)

stickiness stickiness parameer for Chinese restaurant process prior(default = 0)

K maximum number of latent causes(default = 10)

c_alpha concentration parameter for Chinese restaurant process prior(default = 0.1)

g temporal scaling parameter(default = 1)

psi [N x 1]binary vector specifying when protein synthesis inhibitor is injected(default = 0)

eta learning rate(default = 0.2)

maxIter maximum number of iterations between each trial(default = 3)

w0 initial weight value(default = 0)

sr US variance(default = 0.4)

sx stimulus variance(default = 1)

theta response threshold(default = 0.3)

lambda response gain(default = 0.005)

K maximum number of latent causes(default = 15)

nst If you don't want to use  a nonlinear sigmoidal transformation, you set nst = 0.(default = 0)

Value

V: vector of conditioned response on each trial

Zp: latent cause posterior before observing US(Trial*K)

Z: latent cause posterior(Trial*K)

Examples

# results <- infer_lcm_rw(X, opts)