fit_lcm.Rd
fit_lcm
fit latent cause model to conditioning data
fit_lcm(data, model, opts, parameter_range, estimation_method)
data | long format data containing the following variables (Order and name is exactly the same as following): ID Subject ID CR Conditioned Response US Unconditioned Stimulus CS Conditioned Stimului or Context. If using multiple CS, set variables name as CS1,CS2,CS3... If you want to use LCM-RW, you have to add time variable(stimulus onset, unit is sec) before US. |
---|---|
model | 1 = latent cause model, 2 = latent cause modulated RW model |
opts | (optional)options used in inference <For LCM> a hyperparameter of beta prior(default = 1) b hyperparameter of beta prior(default = 1) c_alpha concentration parameter for Chinese restaurant process prior(default = 1) stickiness stickiness parameer for Chinese restaurant process prior(default = 0) K maximum number of latent causes(default = 10) <For LCM-RW> a hyperparameter of beta prior(default = 1) b hyperparameter of beta prior(default = 1) c_alpha concentration parameter for Chinese restaurant process prior(default = 1) stickiness stickiness parameer for Chinese restaurant process prior(default = 0) K maximum number of latent causes(default = 10) c_alpha concentration parameter for Chinese restaurant process prior(default = 0.1) g temporal scaling parameter(default = 1) psi [N x 1]binary vector specifying when protein synthesis inhibitor is injected(default = 0) eta learning rate(default = 0.2) maxIter maximum number of iterations between each trial(default = 3) w0 initial weight value(default = 0) sr US variance(default = 0.4) sx stimulus variance(default = 1) theta response threshold(default = 0.3) lambda response gain(default = 0.005) K maximum number of latent causes(default = 15) nst If you don't want to use a nonlinear sigmoidal transformation, you set nst = 0.(default = 0) |
parameter_range | (optional) range of parameter(a_L, a_U, e_L, e_U) |
estimation_method | (optional) 0 = optim, 1 = post mean(only latent cause model), 2 = optimize(lcm) |
return the fit, parameters and plc_vcr. fit is fitting results. parameters is parameters estmated including post_mean_alpha(posterior mean alpha) and logBFlog(Bayes factor for the alpha>=0 model relative to the alpha=0 model). plc_vcr is matrix of latent cause posterior and V & CR predicted.
# results <- fit_lcm(data, model, opts, parameter_range, estimation_method)